# Knapsack Problems

To help understand this problem, I want you to think about a common situation in many people’s lives. You have a road trip coming up today and you’ve overslept and are at risk of missing your flight. And to top matters off, you were planning to pack this morning but now do not have the time. You quickly get up and begin to get ready. You grab the first bag you see and quickly try to make decisions on which items to take. In your head you’re trying to perform calculations on things you’ll need for the trip versus things that you can purchase when you get there; things that you need to be able to have a good time versus things you can do without. And to top matters off, you don’t have time to look for your ideal luggage to pack these things. So you have the additional constraint that the items you pick must all fit into this first bag you found this morning.

The situation I described above is a common problem. Even if we ignore the part about the flight, and just concentrate on the problem of trying to put the most valuable set of items in our bag, where each item has its own value and its own size limitations, this is a problem that comes up quite often. The problem is known (in the math, computer science and operations research communities) as the knapsack problem. It is known to be difficult to solve (it is said to be NP-Hard and belongs to a set of problems that are thought to be the most difficult problems within its class). Because of this difficulty, this problem has been well studied.

What I provide in my script are two approaches to solving this problem. The first is a greedy approach, which selects a set of items by iteratively choosing the item with the highest remaining value to size ratio. This approach solves very fast, but can be shown to give sub-optimal solutions.

The second approach is a dynamic programming approach. This algorithm will solves the problem by ordering the items 0, 1, …, n and understanding that in order to have the optimal solution on the first i items, the optimal solution must have been first selected on the fist i-1 items. This algorithm will optimally solve the problem, but it requires the computation of many sub-problems which causes it to run slowly.

Update (4/2/2013): I enjoy this problem so much that I decided to implement two additional approaches to the problem: Linear Programming and Backtracking.

The Linear Programming approach to this problem comes from the understanding that the knapsack problem (as well as any other NP-Complete problem) can be formulated as an Integer Program (this is a mathematical formulation where we seek to maximize a linear objective function subject to a set of linear inequality constraints with the condition that the variables take on integer values). In the instance of the knapsack problem we would introduce a variable xi for each item i; the objective function would be to maximize the total value of items selected. This can be expressed as a linear objective function by taking the sum of the products of the values of each item vi and the variable xi; the only constraint would be the constraint saying that all items fit into the knapsack. This can be expressed as a linear inequality constraint by taking the sum of the products of the weights of each item wi and the variable xi. This sum can be at most the total size of the knapsack. In the integer programming formulation, we either select an item or we do not. This is represented in our formulation by allowing the variable xi = 1 if the item is selected, 0 otherwise.

The LP relaxation of an integer program can be found by dropping the requirements that the variables be integer and replacing them with linear equations. So in the case of the knapsack problem, instead of allowing the variables to only take on values of 0 and 1, we would allow the variables to take on any value in the range of 0 and 1, i.e 0 <= xi <= 1 for each item i. We can then solve this LP to optimality to get a feasible solution to the knapsack problem.The second knapsack approach I implemented today is through backtracking. Similar to the Dynamic Programming approach to this problem, the backtracking approach will find an optimal solution to the problem, but these solutions generally take a long time to compute and are considered computationally inefficient. The algorithm I implemented here first orders the item by their index, then considers the following sub-problems for each item i "What is the best solution I can obtain with this initial solution?". To answer this question, the algorithm begins with an initial solution (initially, the empty set) and a set of unchecked items (initially, all items) and recursively calls itself on sub-problems with an additional item as a part of the initial solution and with this item removed from the unchecked items.So check out my knapsack problem page. I think its a good way to be introduced to the problem itself, as well as some of the techniques that are used in the fields of mathematics, computer science, engineering and operations research.

Other Blogs covering this topic:
Journey to the Four Point Oh

# Triangle Trigonometry

I haven’t forgotten about my pledge to focus more content here towards some of the areas I’ve been asked to tutor on recently. This latest one is designed to help users understand the properties of triangles. It is based on two laws that we learn in trigonometry: the law of sines and the law of cosines. Assume that we have a triangle with sides of lengths a, b, and c and respective angles A, B and C (where the angle A does not touch the side a, the angle B does not touch the side b, and the angle C does not touch the side c). These laws are as stated as follows:

Law of Sines

 a sin(A)
=
 b sin(B)
=
 c sin(C)

Law of Cosines
c2 = a2 + b2 – 2*a*b*cos(C)

We can use these laws to determine the sides of a triangle given almost any combination of sides and angles of that triangle (the only one we cannot determine properties from is if we are given all three angles, as this leads to many solutions).

The script generates random triangles, with different combinations of sides and angles revealed and the user’s job is to try to determine the missing sides. There is a button to reveal the solution, or if you’d like to see how we arrive at these values, you can check the “Show work” box.

Hope you enjoy.

Other Blogs covering this topic:
Mathematical!
Algebra 2 Trig

Here in DC, we recently had an unexpected snow day. By the word unexpected, I don’t mean that the snow wasn’t forecast – it was definitely forecast. It just never came. However due to the forecast I decided to avoid traffic just in case the predictions were correct. So while staying at home, I began thinking about some things that I’ve been wanting to update on the site and one thing that came up was an update to my Sudoku program. Previously, it contained about 10000 sample puzzles of varying difficulty. However, I told myself that I would return to the idea of generating my own Sudoku puzzles. I decided to tackle that task last week.

The question was how would I do this. The Sudoku solver itself works through the dancing links algorithm which uses backtracking, so this was the approach that figured as most likely to get me a profitable result in generating new puzzles (I have also seen alternative approaches discussed where people start with an initial Sudoku and swap rows and columns to generate a new puzzle). The next question was how to actually implement this method.

Here is an overview of the algorithm. I went from cell to cell (left to right, and top to bottom starting in the top left corner) attempting to place a random value in that cell. If that value can be a part of a valid Sudoku (meaning that there exists a solution with the current cells filled in as is), then we continue and fill in the next cell. Otherwise, we will try to place a different value in the current cell. This process is continued until all cells are filled in.

The next step was to create a puzzle out of a filled in Sudoku. The tricky about this step is that if too many cells are removed then we wind up generating a puzzle that has multiple solutions. If too few cells are removed though, then the puzzle will be too easy to solve. Initially, I went repeatedly removed cells from the locations that were considered the most beneficial. This generally results in a puzzle with about 35-40 values remaining. To remove additional cells, I considered each of the remaining values and questioned whether hiding the cell would result in the puzzle having multiple solutions. If this was the case, then the cell value was not removed. Otherwise it was. As a result I now have a program that generates Sudoku puzzles that generally have around 25 hints.

# The PageRank Algorithm

I think one of the best recent examples of the importance of mathematics is the rise of the search engine Google. I remember the world of search engines before Google and it was dominated by names like AltaVista, Yahoo, WebCrawler, Excite, and the likes. The standard way these search engines ranked the order that pages would be listed on a search query was basically to count the number of times that query appeared on pages in their database. The pages with the most listings were considered the most important, the second most listings were second most important and so on and so forth.

This sounds like a feasible way of doing things but let me show you an example of how this can be tricked. Suppose I wrote my first web page and it looked like the following:

That’s a basic web page that may not garner much attention, and it wouldn’t rank highly in most search engines as no work appears more than once. Suppose that, this being a math web page, I wanted it to rank higher on the query “math”. Then I could just edit the source code of the page to be as follows:

This second page says not much more than the first, but the fact that the word math appears 9 additional times would increase the ranking of this page among math pages. This is a very simple example, but it shows how these search engine rankings did not have a useful metric for determining the important sites on the web.