Greatest Common Divisor

This program implements Euclid's Algorithm to reduce a given fraction to lowest terms. This is done by finding the greatest common divisor (GCD) of the numerator and denominator. The GCD of two integers is the largest integer which divides them both. A fraction is reduced to lowest terms by repeatedly dividing both the numerator and the denominator by their GCD. Euclid's Algorithm finds the GCD to two integers, say u and v by finding the GCD of u - v and v (if u > v).


Show work?

Recent Updates

  • 08-10-2017 Floyd-Warshall Shortest Paths
  • 08-01-2017 Degree Centrality of a Graph
  • 06-03-2017 Tarjan's Strongly Connected Components Algorithm
  • 03-20-2017 Longest Common Subsequence
  • 10-27-2016 Independent Set Puzzles
  • 06-28-2016 Lets Learn About XOR Encryption
  • 06-15-2016 Discrete-time Markov Chains
  • 03-01-2016 Topological Sort
  • 01-21-2016 The RSA Algorithm
  • 11-20-2015 How To Take Notes in Math Class
  • 10-28-2015 The Depth-First-Search Algorithm
  • 10-28-2015 The Breadth-First-Search Algorithm
  • 09-23-2015 ID3 Algorithm Decision Trees
  • 07-08-2015 Clique Problem Puzzles
  • 06-25-2015 Unidirectional TSP Puzzles
  • 04-04-2015 Learn About Descriptive Statistics
  • 02-19-2015 Slope Formula
  • 01-15-2015 Interactive Midpoint Formula
  • 12-18-2014 Triangle Sum Puzzle
  • 12-02-2014 The Bridge Crossing Problem