Here in DC, we recently had an unexpected snow day. By the word unexpected, I don’t mean that the snow wasn’t forecast – it was definitely forecast. It just never came. However due to the forecast I decided to avoid traffic just in case the predictions were correct. So while staying at home, I began thinking about some things that I’ve been wanting to update on the site and one thing that came up was an update to my Sudoku program. Previously, it contained about 10000 sample puzzles of varying difficulty. However, I told myself that I would return to the idea of generating my own Sudoku puzzles. I decided to tackle that task last week.

The question was how would I do this. The Sudoku solver itself works through the dancing links algorithm which uses backtracking, so this was the approach that figured as most likely to get me a profitable result in generating new puzzles (I have also seen alternative approaches discussed where people start with an initial Sudoku and swap rows and columns to generate a new puzzle). The next question was how to actually implement this method.

Here is an overview of the algorithm. I went from cell to cell (left to right, and top to bottom starting in the top left corner) attempting to place a random value in that cell. If that value can be a part of a valid Sudoku (meaning that there exists a solution with the current cells filled in as is), then we continue and fill in the next cell. Otherwise, we will try to place a different value in the current cell. This process is continued until all cells are filled in.

The next step was to create a puzzle out of a filled in Sudoku. The tricky about this step is that if too many cells are removed then we wind up generating a puzzle that has multiple solutions. If too few cells are removed though, then the puzzle will be too easy to solve. Initially, I went repeatedly removed cells from the locations that were considered the most beneficial. This generally results in a puzzle with about 35-40 values remaining. To remove additional cells, I considered each of the remaining values and questioned whether hiding the cell would result in the puzzle having multiple solutions. If this was the case, then the cell value was not removed. Otherwise it was. As a result I now have a program that generates Sudoku puzzles that generally have around 25 hints.

- My Sudoku Program (0.852)
- Shade The Cells Puzzle (0.511)
- Nonogram Puzzles (0.497)
- Clique Problem Puzzles (0.313)
- Independent Set Puzzles (0.313)