A JavaScript Implentation of MapReduce’s WordCount

MapReduce WordCount

You can view a javascript implementation of the WordCound Program in Mapreduce at Javascript Implementation of Mapreduce WordCount

One of the big things in the world of Data Science and Cloud Computing is the map-reduce implementation of various algorithms. This is not always a straightforward procedure and so learning to think in terms of map-reduce implementations can be a challenging conversion from thinking in a functional programming frame of mind. In light of this I thought it would be convenient to try to help users “visualize” this concept. This is a challenging task because there are many concepts of cloud computing that I am unable to provide in this environment. However, just as many of the books on MapReduce provide pseudo-code on various implementations of algorithms in a Map-Reduce environment, I will attempt to show how data flows from the input to the mappers to the shuffle and sort phase to the reducers and finally to generate the output. I leave the users the task of actually putting these into the context of a Java MapReduce environment.

I want to first speak about the concept of (key, value) pairs which is a very important in MapReduce programming. I will speak about this in the context of a WordCount program. The purpose of a WordCount program is to count the number of occurrences of each word in a given file. First data is input to the mapper in (key, value) pairs. For our example, the key will be the line number of input (so each line of input will go to a different mapper) and the value will be the text present on that line. Once the mapper has the input, it will perform some operation on it and output data again in (key, value) pairs. In the WordCount example, the mappers will simply output each word that occurs as a new key on that line and the integer “1” as the associated value (note that a single mapper can output multiple (key, value) pairs).

One of the main things to understand in a MapReduce is that there are a number of Mappers running on a given input file and these Mappers cannot interact with one another. Suppose we have two different mappers, lets call them Mapper1 and Mapper2 that are each working on two different lines of input from a file. If both lines of input have the word “apple”, there is no way for Mapper2 to know that Mapper1‘s line of input also has this word. In this setting that’s perfectly fine because the Shuffle and Sort phase is where all the (key, value) pairs that were output by the mappers, compares the keys to one another and if they are equal to one another combines their respective values into a list of values. Unequal keys are sorted.

So if both Mapper1 and Mapper2 contained the word “apple” in their line of text, then the (key, value) pair (apple, 1) will occur twice. So the Shuffle and Sort phase will notice this and output the (key, value) pair (apple, {1, 1}).

Each reducer is then given a key and a list of values that were output by the mappers. The goal will be to perform some operation and again output data in (key, value) pairs. In the WordCount example, we will use what is known as the sumReducer. It gets this name because its job is simply to sum the values in the list of values and output the (key, value) pair that is the original key and this sum of values.

You can view a javascript implementation of this at Javascript Implementation of Mapreduce WordCount

The Assignment Problem

I just finished a script that generates instances of the assignment problem and solves them step by step. You can check it out here.

Assignment Problem Image

Suppose you are the owner of a company and need to delegate tasks to your employees. You’ve generated a table that tells how long (in minutes) you think it would take each person to accomplish each individual task (called Jobs). Your goal is to find an assignment of people to jobs that minimizes the total amount of time it will take to complete all jobs. The requirements are that each job must be completed by only one person, and each person can complete only one job.

We can think of the employees at the job as our supply and the tasks as the demand. In order for this problem to have a feasible solution, we must have enough people (supply) to complete the number of jobs (demand). Because of this, our examples will all include situations where there are exactly the same number of people as jobs.

To solve this problem, we must first generate an initial assignment and see how good this assignment is. There are several ways of generating an initial solution, but two that I wanted to focus on are the “NorthWest Corner Rule” and the “Minimum Matrix Method”.

  1. The Northwest Corner Rule considers the matrix and repeatedly assigns the top remaining row to the left-most remaining column. If we think of the cost matrix as a being like a map then “top” becomes similar to “north” and left-most becomes similar to “west”, hence the derivation of the name. In assignment problems, this will result in the main diagonal being selected.
  2. The Minimum Matrix Method is an iterative method that searches the matrix for the minimum cell in the matrix and assigns that person to the associated job and removes them from consideration and repeats itself until all people have been assigned to jobs.

Once we have formulated an initial feasible solution, we need to check it for optimality. To do this, we use the Network Simplex Method, where we build a basis based on this initial solution. When we consider this problem as a network flow problem, a basis for the problem is a spanning tree (one less than twice the number of nodes in the graph that does not have any cycles) of the network. Because the assignment solution only contains one edge for every two nodes in the graph, we need to add a number of edges to the basis that contains no flow (which makes the solution degenerate) to form this spanning tree.

Once a spanning tree is formulated, we can solve for the dual variables by arbitrarily setting one node’s dual value to zero and solving for the remaining dual variables under the requirement that all arcs in the basis (spanning tree) must satisfy the equation uk + vi = cki for each person k and job i.

When we have dual variables, we can check to see if this solution is optimal by checking to see if all the other constraints are violated. This means that for every person k and every job i, we must have uk + vi cki (notice that this is a more relaxed version of what we had when we were solving for the dual variables themselves).

If a constraint is found to be violated, then we need to add the associated edge to the basis and remove an edge on the cycle that is formulated as a result, which generates a new solution.

So check out The Assignment Problem Script and let me know what you think.